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Abstract
Diffusion of molecules in brain and other tissues is important in a wide range
of biological processes, such as the delivery of drugs, and for measurements,
such as diffusion-weighted magnetic resonance imaging. The time-dependent
diffusion coefficient D(t) of mobile molecules confined in pores or cells
carries information about the confining geometry. At early times, D(t) gives,
irrespective of details, the pore surface to volume ratio (S/Vp), and the cell-
wall permeability κ . At long times, D(t) reaches a limiting value D0/α, where
tortuosity α is a characteristic of the geometry of the medium.

1. Introduction

According to the National Institute of Health1, 50 million people in the USA alone suffer
from damage to the nervous system, such as Parkinson’s disease, Alzheimer’s disease, stroke,
vascular dementia, spinal cord and head injury and brain tumour. Needless to say, exploring
functional brain architecture is an important problem. The purpose of this paper is to outline
several techniques from the physics of diffusion in porous media that can help in studying brain
and other tissue structures. The problem of diffusion of various chemicals through the complex
porous structure of brain and other tissues is an important problem [1] for understanding drug
delivery, and intra- and inter-cellular signalling. Recently, diffusion weighted nuclear magnetic
resonance based techniques (NMR) have emerged [2–6] as premier non-invasive techniques
for studying brain and its disorders. Magnetic resonance diffusion imaging permits visualizing
ischemic regions promptly. By contrast, conventional MR images take up to 24 h before the
infarcted region can be seen. The diffusion coefficient of water in brain decreases quickly
following stroke and other brain injuries by about 30%–40% in both gray and white matter.
Although the mechanism is not known, some believe it is that the decrease results from cell
swelling and net movement of water molecules [4–7].

The rapid increase in the use of diffusion-weighted magnetic resonance imaging (MRI)
has raised the need for a better understanding of diffusion in tissues. The exact relationship

1 ‘Know your Brain’, National Institute of Health, PO Box 5801, Bethesda, MD 20824, USA.
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between the apparent diffusion coefficient (a tensor in general) and tissue microstructure and
composition is not known,but could benefit a great deal from studying diffusion as a function of
diffusion length, i.e. the time of diffusion. Because the diffusion length in NMR can be tailored
between micron to millimetre range, NMR is perfectly suited for studying biological structures
in this range. The recognition of this unique capability of diffusion NMR has generated a great
deal of interest, see for example, the references cited in [4].

Diffusion is widely used to probe structures and fluid dynamics in porous media, including
such diverse materials such as cheese, chocolate, cement, rocks for oil exploration (see
references cited in [8]). When molecules are contained in interstices or pores or blocked
by tissue walls, their motion is hindered by the restricting geometry. The local geometry
leaves a fingerprint, so to say, on the diffusion coefficient; changing it from the putative bulk
time independent value D0 to a time dependent D(t). Water diffusion is highly sensitive to
geometric features, such as cell size or fibre orientation (diffusion anisotropy in white matter).
NMR measurements give us an unprecedented opportunity to obtain detailed information about
the nature of the selective pathways, the relative permeability (flow channels of specific fluids).
The dynamics of molecules involving relatively large displacements through diffusion and flow
are particularly suited for probing time and space correlations in porous media.

In this paper we describe the inverse problem of deducing information about the confining
geometry from the time-dependent diffusion coefficient D(t) of mobile molecules confined in
cells. We will point out that there are robust ways of deducing surface-to-volume ratio and
cell-wall permeability.

2. Tortuosity in porous media with impermeable walls

In a well connected porous medium D(t) approaches, at long times, a non-zero finite value,
reduced by a geometrical factor known as the tortuosity α,

D(t → ∞) → D0

α
. (1)

The coefficient α is a dimensionless number that defines the dc limit of diffusion and
conductivity, equation (2). There are a vast number of porous media where the pores are
interconnected and displacement is restricted only by pore walls. Most biological tissues and
sedimentary rocks fall into this category. The geometrical parameter [9] ‘tortuosity’ α plays
an important role in various transport processes in porous media-ranging from conductivity
of rocks [10] to the velocity of the fourth sound in super-leaks [9]. This factor plays an
important role in diffusion in brain [1] as well. Nicholson and colleagues [1] treat diffusion
in brain tissues as diffusion within a porous medium with impermeable walls. Obviously,
extracellular diffusion with impermeable cells can be likened to diffusion in porous rocks
where the grains are impermeable and fluid resides in the interstices. According to Nicholson,
signalling between neurons in the brain takes place principally via the passive movement of
substances in the extracellular space.

In porous rocks made of insulating grains, the conductivity of rock σ is proportional to
the conductivity of the interstitial fluid σw through a geometrical factor F , which also relates
to α = Fφ, where φ is the porosity, i.e. the volume fraction of fluid,

σ = σw

F

D(t → ∞) = D0

Fφ
. (2)



Diffusion and tissue microstructure S5215

Extra-Axonal Fluid

Axonal Fluid

Myelin

Figure 1. Schematics of white matter showing axons and the cross-section of the bundle (lower
right). The gaps in the myelin sheath, known as nodes of Ranvier, are not shown. Water diffuses
faster parallel to the fibres, than perpendicular to them.

So, at long times we expect that the mean square displacement grows linearly in time but with
an effective diffusion constant D0/α. The electrical conductivity measurements have been
compared successfully to a diffusion derived long-time limit in many cases [8].

A large amount of literature on the theory of transport in complex porous media is devoted
to computation of conductivity and hence of F and α. These results depend on the specific
model chosen, however model independent bounds are known. Often these bounds are too
wide to be useful. Exact results for some periodic structures can be obtained, see, for example,
references in [7]. Only very few analytical results for random geometry are known. These
again are generally based on the assumed shape of grains and uncontrolled approximations. For
example, in packs of spherical beads, α = √

φ [10], a value that compares well with data [8]. If
one uses the so called Archie relation [10], σ = σwφ2, which holds in a wide variety of rocks,
one has α = φ. Numerical simulations using the histology of brain as geometric input gives
a value [11] α = φ0.82, somewhat intermediate between these two limits. However, white
matter is highly anisotropic and for that new results are being developed. Exact results for
tortuosity in model systems with permeable walls has been considered in Sen and Basser [7],
where white matter (see figure 1) is modelled as an ordered pack of cylinders. Pioneering
results for tortuosity that depends on wall permeability were first obtained by Latour et al [12]
albeit using an approximate iterated dilute limit method [10].

The magnetic resonance imaging (MRI) can spatially resolve different types of biological
tissue from contrasts in signals. MRI can detect gross structural changes, such as tissue
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shrinkage and its reversal. Diffusion tensor imaging (DTI) is a powerful non-invasive tool
to assess developing, normal and pathological white matter in the brain in vivo [2]. DTI is
beginning to reveal microstructural abnormalities in white matter that are consistent with post
mortem observations of white matter damage, such as myelin loss and enlargement of cells.
DTI is capable of detecting these changes even when region investigated appears normal in
standard MRI [2].

White matter, figure 1, has an underlying fibrous structure giving rise to an observed
anisotropy in the diffusion coefficient, i.e. different diffusion coefficients parallel and
perpendicular to the fibres. We [7] model diffusion in white matter fascicles as a problem of
diffusion in an array of identical thick-walled cylindrical tubes immersed in an outer medium
and arranged periodically in a regular lattice. The diffusing molecules have different diffusion
coefficients and concentrations (or densities) within the tubes’ inner core, membrane and
myelin sheath, and within the outer medium. For an impermeable myelin sheath, diffusing
molecules within the inner core are completely restricted, while molecules in the outer medium
are hindered due to the tortuosity of the array of impenetrable tubes [7].

3. S/Vp with permeable walls

Transport of different molecules, especially of water, the fundamental solvent, entry of
metabolite and exit of waste from cells across the membranes play key roles in all of
biology. Diffusion across membranes is equally important in numerous physical and chemical
systems especially in molecular sieves and nanoporous structures, with examples ranging
from desalination, kidney dialysis to catalysis. Membrane permeability κ determines the rate
of transport of chemicals between two compartments. With a permeable membrane, molecules
diffuse across the wall, figure 2. Measurement of permeability of membranes is a difficult and
challenging problem. There is a large literature on this subject, which is beyond the scope
of this paper (see references in [8]). In a recent paper [13] an exact, universal, short-time
asymptotic formula for the dependence of D(t) on the permeability has been given. This can
be used to estimate the permeability in vivo in a non-invasive measurement. The NMR data
on erythrocytes [12] show that the effect of permeability can be significant on the observed
D(t) within the timescales of measurement and hence κ is deducible from the data.

At short-time limit, the surface appears flat. We use uppercase to denote propagators
in 3D, for example, GR(r, r1, t) is the Green function for particles released to the right
(within the cell) of the permeable wall at a point r1 ≡ {x1 > 0, y1, z1} and ending up
in another point r ≡ {x, y, z}, at a time t later; we reserve the lowercase gR(x, x1, t) for
the one dimensional problem considered in [13]. We take x to be direction normal to the
surface. GR(r, r1, t) = GRR(r, r1, t), x > 0 and GR(r, r1, t) = GLR(r, r1, t), x < 0.
To be explicit, GRR(r, r1, t) is the propagator for particles released to the right (within the
cell) of the permeable wall at a point r1 ≡ {x1 > 0, y1, z1} and ending up at another point
r ≡ {x > 0, y, z}, still within the cell, at a time t later. The superscripts RR denote particles
released to the right and observed to the right of the membrane. Similarly, GLR(r, r1, t)
denotes the propagator for the initial position to the right and the final position to the left of
the membrane. The equations of motion for the propagators are:

DR∇2GRR(r, r1, t) = ∂GRR(r, r1, t)

∂ t
, x > 0, x1 > 0

DL∇2GLR(r, r1, t) = ∂GLR(r, r1, t)

∂ t
, x < 0, x1 > 0

(3)
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Figure 2. A cartoon of a random walk crossing a cell membrane. The diffusion coefficients, both
parallel and perpendicular to membrane, are altered by the permeability factor κ .

with boundary conditions

DR
∂GRR(r, r1, t)

∂x
= DL

∂GLR(r, r1, t)

∂x
= κ[GRR(r, r1, t) − GLR(r, r1, t)] r on wall �. (4)

Here DR and DL are free (i.e. bulk) diffusion coefficients inside and outside of the cell
respectively.

Diffusion parallel to the membrane is obtained by considering the time derivatives
of the mean square displacements parallel to the wall and using the above equations of
motions. For particles released to the right (within the cell) of the permeable wall at a point
r1 ≡ {x1 > 0, y1, z1} and ending up in another point r ≡ {x > 0, y, z}, still within the cell,

∂〈(y − y1)
2
RR〉

∂ t
= 1

VR

∫
VR

d3r1

∫
VR

d3r (y − y1)
2 ∂GRR(r, r1, t)

∂ t
. (5)

Using equation (3) in equation (5), and integrating by parts repeatedly using Green theorem
and adding a corresponding term for walkers released to the right of the membrane and ending
up at the left, and using the boundary conditions equation (4) to cancel certain surface terms,
we find for the walkers released inside the cell,

∂〈(y − y1)
2
R〉

∂ t
= ∂〈(y − y1)

2
RR〉

∂ t
+

∂〈(y − y1)
2
LR〉

∂ t

= 1

VR

∫
VR

d3r1

∫
VR

d3r (y − y1)
2 ∂GRR(r, r1, t)

∂ t
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+
1

VR

∫
VR

d3r1

∫
VL

d3r (y − y1)
2 ∂GLR(r, r1, t)

∂ t

= 2DR MRR
0 (t) + 2DL MLR

0 (t). (6)

Here

MRR
0 (t) = 1

VR

∫
VR

d3r1

∫
VR

d3r GRR(r, r1, t),

MLR
0 (t) = 1

VR

∫
VR

d3r1

∫
VL

d3r GLR(r, r1, t),
(7)

denote, respectively, the fraction of walkers ending up at time t on the right and on the left of
the membrane, having been released at time t = 0 on the right.

This equation (6) has a simple interpretation. The rate of change of the mean square
displacement for walkers released inside (right of the wall) has two contributions, first from
fraction of walkers MRR

0 (t) that remains inside the cell with diffusion coefficient DR and
the fraction that oozes out to the left MLR

0 (t), where they diffuse with an effective diffusion
coefficient DL.

We find at short-times:
∂〈(y − y1)

2
R〉

∂ t
= 2DR

(
1 − κ t

S

VR

)
+ 2DLκ t

S

VR
+ O(t3/2), (8)

for the walkers released on the right of the membrane. At short-times, a fraction κ t S
VR

of walkers
leak out from right to left and have different diffusion coefficients. S is the total surface area.
The result for diffusion perpendicular to the membrane is obtained by considering the time
derivatives of the mean square displacements in the direction normal to the membrane, and
using the above equations of motions,

〈(x − x1)
2〉R = 2DRt − SR

VR

(
8DR

3
2 t

3
2

3
√

π
− √

DL
(√

DL +
√

DR
)
κ t2

)
+ · · · . (9)

Here VR denotes the total volume within the cells and VL is the total volume outside; SR/VR

is the total internal surface divided by the total internal cell volume. At short-times, a fraction
κ t S

VR
of walkers leak out from right to left and have different diffusion coefficients. S is the

total surface area. Computation of MRR
0 (t), MLR

0 (t) is expedited again by considering their
time derivatives, such as,

∂MRR
0 (t)

∂ t
= 1

VR

∫
VR

d3r1

∫
VR

d3r
∂GRR(r, r1, t)

∂ t
(10)

and using the equations of motion and using Green theorem and the exact form of the
propagators [13].

Similar results can be found for particles released outside the cell, by swapping L ↔ R.
Previously Latour et al [12] analysed the long-time behaviour using a specific model of

packed spherical cells with permeable walls. In their model, the most important result is that the
tortuosity factor α(κ) depends on permeability [7]. However, as noted before, their pioneering
result is based on an uncontrolled approximation of the iterated dilute limit [10]. The short-
time correction that includes the term linear in κ t S/Vp, independent of model geometry, would
give a far more robust estimation.

4. Inverse problems and Kac’s ideas

The common strategy for deducing geometry from diffusion results relies on the solution of the
diffusion equation in bounded regions—such as the interior of a sphere. The diffusion equation
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for bounded regions is amenable to ‘spectral decomposition’ in terms of eigenmodes and eigen
frequencies. The strategy involves fitting observed data to results of ‘forward modelling’,
i.e. to responses that are worked out numerically or analytically for specific model systems.
Although analytical and numerical solutions exist only for simple geometries, this strategy
works extremely well in many cases—for example in extracting diameters of spherical or
cylindrical cells in mono disperse samples.

In biological systems, the shapes of cells are complex, connecting passages are tortuous,
connectivity is random and, above all, many length scales come into play. For well connected
systems, there is a continuum of eigen-modes. Inversion by the above techniques thus becomes
impossible. For complex systems, even the forward problem becomes unsolvable, let alone
the inverse problem. There are additional problems of non-uniqueness. Even for the case
of objects having discrete spectra, it is not possible to identify shapes. Relatively simple
but different shapes can give rise to same set of frequencies. For complex systems a set of
different strategies are needed. One alternate robust strategy emerges from the study by Kac
in his celebrated paper ‘Can one hear the shape of a drum?’ [14]. The connection to ‘drums’
derives from the well known fact in mathematical physics that the vibrations of membranes
obey the diffusion equation [14].

Kac started out asking (roughly speaking) whether one can infer the geometric shape of a
drum from knowing the drum’s frequencies of vibrations (eigenfrequencies). Kac was unable
to answer this question, and recently it has been proven that the answer is ‘no’ [15]. However,
Kac showed that both the area of a drum’s membrane and the length of its perimeter affect
the short-time behaviour of certain functions of a drum’s spectrum of normal modes. In other
words, one can ‘hear’ a drum’s area and perimeter. These results are universal—i.e. do not
depend on the solution of forward problem for specific shape.

Computation of macroscopic transport coefficients, such as α, depends on the specific
model chosen, although model independent bounds are known, and exact results for some
periodic structures can be obtained, see, for example, in [7]. Although tortuosity α contains
information about geometry, many different geometries can give rise to same α.

Kac’s insights have prompted a new analysis of time dependent diffusion coefficients of
more complex systems in terms of a few geometrical parameters, such as surface-to-pore-
volume ratio S/Vp, average curvature, etc [8]. In systems where surface drives chemistry, e.g.,
biology, catalysis, colloidal sciences, as well as in transport in porous rocks, S/Vp is a key
parameter which is directly analogous the perimeter of a drum. The importance of S/Vp is
particularly paramount for systems with characteristic sizes in the micron range where NMR
is unsurpassed as a tool. For example, NMR is unique in detecting changes in S/Vp of cells
in ischemia, a fact that can be used for early detection, and, hence, for damage control. The
short-time asymptotic form that we discuss above is more than a scaling law, it has all the
constants needed to extract the geometrical parameter. At short times, D(t) of all smooth
porous media can be expressed by a single simple universal equation with the characteristic
lengths of the system expressed in units of the diffusion length

√
2D0t the scale parameter.

A universal feature in D(t) determines the measured S/Vp, κ in a robust manner [8].
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